

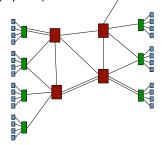
Overview

- Networks
- · Networks and energy
- Policy approaches
- Functions
- · The new framework

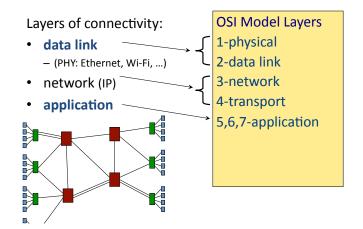
(to find report, google the title)

Context

- "Regular" standby occurs in every more products, but much progress in recent years
- Widely horizontal requirements in place
 e.g. EU 1275/2008 "Lot 6"
- Problem not solved, but is contained
- BUT, network connectivity in these modes not part of policy system, AND
 - More products with network interfaces
 - More time spent in networked low-power modes
 - Reduced 'regular' standby levels means more power "cost" for network connectivity
 - Perceived and actual complexity introduced by networks


Solution

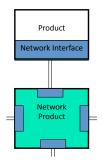
- Move from universal named modes to "functional approach"
 - Necessary for network standby
 - Helpful for all modes
- Affects test procedures and requirements
- Definitions of functions can be harmonized and requirements applied to categories of products
- Only way to be maximize effectiveness and minimize complexity


What is a Network? (1)

- Ability to communicate arbitrarily among many nodes
- Designed on OSI model (layered)
- Digital
- Usually IP (Internet Protocol)

 data links (1 to 1) also of interest; analog too

What is a Network? (2)



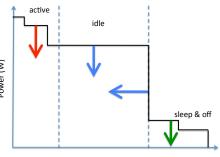
How networks drive energy use

Direct

- -Network interfaces (NICs)
- -Network equipment
- Induced in Networked products
 - -Increased power levels
 - Increased **time** in higher power modes (to maintain network presence)

Network induced consumption > all direct

Network equipment


Routers, switches, modems, wireless APs, ...

... vs networked equipment

PCs, printers, set-top boxes, ...

Core methods to reduce energy use

- active power
- lowpower mode power
- idle time or power

Annual energy; power sorted high -> low

Network fundamentals

- The behavior on the network of one device can change the energy use of devices it is connected to
- For information technology, technology standards serve the role the laws of physics play for other end uses
 - Can prohibit or require energy-saving features
 - Network is a source of both energy problems and solutions
- Technology standards play a role in policy for networked products unlike any other policy element

Technical approaches to reduce network-related energy

- Reduce power required for network links (and network functions)
- Power manage networked devices
 - scale internal power in proportion to task requirements or throughput (all modes)
 - change power state <u>without cooperation of</u> the network
 - change power state <u>in coordination with</u> the network
- · Reduce services delivered

But first,

Product usability

- <u>People don't buy products to save energy;</u> they buy them to be functional
 - Energy saving should compromise functionality minimally, or not at all
 - Ideal to *improve* functionality with energy-saving features
- Latency (delay) a key issue with networks
 - People and devices
- Clarity and consistency in user interfaces and across technologies can help
 - IEEE 1621: Power Control User Interface Standard

Policy to support technical options

- · Energy standards that recognize technologies
- Energy standards that require technologies
- Test procedures to enable the above
- Roadmap for needed network technology
 - Describe the future we want to have
- Policy signals for technology development
 - Tell technology industry what we want
 - Help create technologies

Network Standby in energy policy almost 20 years old

- Energy Star has origins in network standby
 - First spec 1992 PCs and monitors
 - · Required ability of PCs and monitors to go to sleep
 - Maximum power levels in sleep
 - Referenced a communication standard VESA/DPMS
 - · Relied on coordination between two devices
 - Second spec 1994 Printers
 - · Maximum power levels in sleep
 - · Required maintaining network connectivity in sleep

- Now, 8 specs deal with network
 - Testing, allowances, power mgmt., low-voltage DC, ...

Functions

Communication - Devices

- Remote control power
- Remote control other signals
- Data connectivity
- Network connectivity physical
- Network connectivity content

Communication - People and the Environment

- Sensors
 - Temperature, Ambient Light, Audio, Motion, Atmospheric Pressure, Fluid/Gas Motion
- Displays
 - Audio, Tactile, Visual, Power Indicator
- - Audio, Visual, Touch, User Input (keys/switches/buttons)

Time

- Timer (tracking relative time)
- Clock (keeping absolute time)Schedule (act based on time)
- EMC filters
- Surge protection
- Battery ChargingPower Distribution

Other

- Memory
- Quick wake up
- Various safety and protection functions (ELCB, flood, child lock, movement cutout (iron))

"Periodic Table of Functions"

Communication - devices	and environment	Time	Power	Memory	Other		
Remote power	Temperature sensor	Timer	EMC filter	Volatile memory	Quick wake		
Remote other	Light sensor	Clock	Surge protection	Non-vol. memory			
Data	Audio sensor	Schedule	Not Charging				
Network	Motion sensor		Charging				
	Pressure sensor		Powering				
	Fluid/gas sensor						
	Audio display			Color Code	Category		
	Tactile display				Low power		
	Visual display				Medium power		
	Power indicator				?		
	User input device				High power		

The Framework

- · Have standard "library" of policy content
- Policy based on functions in mode
 - Modes defined by functions, not vice-versa
- Functions are consistent across all products
- Policy defines test procedure for product based on modes with required functions
- Power requirements may be increased by standard power values for function
- · Other requirements also drawn from library
- Policy grounded in:
 - Good network architecture, highly effective power management, and efficient low-power modes

The Framework (2)

- · Intended to find that point that minimizes complexity but maximizes energy savings
 - Best for industry
 - Best for policy
- · Applies horizontal features as widely as possible
 - And no farther
- · Assumes engagement with technology development to reduce power cost of functions, and improve power management
- · Framework intended to be used globally

Technology strategy

- Work with IT industry to change content of technology standards to enhance energy efficiency
 - Revisions to existing standards
 - Assisting ongoing standards development
 - Instigating new standards projects
- Examples
 - Energy/power reporting over Internet Protocol
 - Network standards that provide low-voltage DC power (USB, Ethernet, ...)
 - Audio/video inter-device power control
 - DOCSIS cable modem standard

Selective application of requirements

 Not all content (testing, regulation, ...) applies to all products

The New Framework

Products / Product Types: Simple								Complex						
Terms, Definitions,	Tes	t cc	ndi	tion	s, I	Rep	orti	ng,	C	omi	oliar	nce		
κί Minimum Power	X*		Г	Х		Х	Х		Х		Х			Г
Other Modes Power Supply Battery Charge Networks	Х	Г	Г	Г	Г	Х	Г	Х	Г	Г	Г	Г	Х	Γ
Power Supply		Х	Г		Χ	Х	Г			Χ			Г	Γ
Battery Charge	П	Г	Х	Г	Г	Г	Х	Г	Г	Г	Г	Г	П	Γ
Networks	П	Х	Г	Х	Г	Г	Г	П	Г	Х	Г	Г	Г	Γ
User Interface	Х	Х	Г	Г	Х	Г	Г	Г	Г		Х			Γ
Product-sp			cific	(ve	ertic	al r	eqt	s.)	Х	Х	Х	Х	Х	Г
*Placement of Xs illustrative only	Product A	ш	O		ш	ш	Ø	etc	Computers	Set-top	Appliances	Printers	Cars	etc

Summary

- Networks drive energy use in new and important ways
- Many opportunities to reduce energy use in context of networks
- New framework
 - Widely (not universally) horizontal
 - Requires a technology / policy strategy
 - Standby policy highly relevant
 - Highly cost-effective
 - Manages inherent complexity
 - Inherently global

Challenges / Next Steps

- Ensuring power management schemes are
 - Well-defined
 - Effective
 - Compatible with human needs and expectations
- Clarify interactions between horizontal and vertical standards
- Adapt test procedures see EEDAL 2009
 - "Network connectivity and low-power mode energy consumption", Nordman Bruce, Hans-Paul Siderius, Lloyd Harrington, Mark Ellis, and Alan Meier
- Create 'library' of network content

